
IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.57103 521

Hadoop-GPU Based K-Means for

Data Clustering

Parag Pachouri
1
, Prof. Manaswini Panigrahi

2

Department of Computer Science and Engineering, IES Institute of Technology and Management, Bhopal, India1, 2

Abstract: For achieving data parallelism in Apache Hadoop, MapReduce is the most prominent programming model.

Lots of efforts are attempting for boost the computational speed of MapReduce in Hadoop framework. In this paper, we

present a MapReduce programming model focused on the Kmeans clustering algorithms that leverage the acceleration

potential of the integrated GPU in a multi-node cluster environment. It accelerated the framework by providing intra

parallelism between the MapReduce function by using modified k-means algorithm. Based on various experiments on

multi node cluster and depth analysis, we find that utilizing of the integrated GPU via OpenCL offers significant

performance and power efficiency gains over the original CPU based or sequential approaches.

Keywords: Hadoop, Map/Reduce, OpenCL and KMeans.

I. INTRODUCTION

Hadoop is an open framework overseen by the Apache

Software Foundation for storing and processing huge data

set with use of cluster commodity hardware. The core of

Hadoop consist of two parts, the one is storage part known

as Hadoop Distributed File System and another is

processing part known as MapReduce. Hadoop splits the

file into blocks and distributes amongst the nodes in a

cluster. The Hadoop framework composed by the

following modules as discussed below

 Hadoop Common: This module consist of libraries,

utilities etc which are used for other Hadoop framework

modules.

 Hadoop Yarn: Hadoop Yarn is resource management

platform which is responsible for managing resources in

the cluster.

 Hadoop Distributed File System: Hadoop Distributed

File System: It is specially designed file system for

storing and processing data set with the use of cluster of

commodity hardware and with fixed streaming access
pattern. In Hdfs write once read any number of times

but doesn’t change the content of the file once it keeps

into the Hdfs. The storage location of the file is also

fixed. Hdfs is Master/slave architecture. Hdfs cluster

consists of a single Name node, which is known as

master node or server node that manages the Meta data

and regulates access to files by clients. In HDFS there

are a number of Data Nodes usually one per node in a

cluster, which manage storage attached to the nodes that

they run on. HDFS exposes the file system namespace

and allows user data to be stored files in it. A file is split
into one or more blocks and set of blocks are stored in

Data Nodes which provides read, write requests, and

performs block creation, deletion, and replication upon

instruction from Name node in HDFS.

HDFS Daemons are

Name Node: Namenode is the master node in Hdfs for

maintain and manage the blocks present on the Data node.

It also controls access of fields by client. The main

function of Name node is to maintain and execute the file

System namespace. If any modification in the file it

tracked by Name node. It keeps a record of how the filed

in hdfs are divided into blocks and in which node can store

or execute which block. It maps a file name to a set of

blocks and blocks with Data node. It also records the
metadata of all the files which are stored in hdfs.

Secondary Node: Secondary node are the substitute of

Name node. As we known Name node store vital

information such as metadata of the blocks stored in an

hdfs. This data is not only stored in the main memory but

also stored in the disk. A secondary node constantly reads

all the file system and metadata from the main memory

(RAM) of the name node and writes into the hard disk.

Job Tracker: Job Tracker receives the requests from the

client. Job Tracker talks with Name node to determine the

location of the data. Job Tracker finds the Task Tracker
node for the execution of task based on the locality of the

data.

Data Node: Data node are the slaves’ node in hdfs

architecture. Data nodes are a block server that stores the

data locally. Data node performs low level read write

requests from the file system. Data nodes are responsible

for creating blocks, deleting blocks and replicating blocks.

Data node regularly reports the blocks present in the

cluster to the name node.

Task Tracker: Task Tracker runs on Data node.Mapper

and reducer tasks are executed on the Data node

administered by the task tracker. Task Tracker assign the

task of the mapper and reducer.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.57103 522

Figure 1 Hadoop Cluster

MapReduce: The programming model used in Hadoop is
MapReduce. MapReduce is the basic data processing

method used in Hadoop which includes breaking the entire

task into two parts, known as mappers and reducers.

Figure 2 MapReduce process

II. HADOOP-GPU BASED K-MEANS CLUSTERING

ALGORITHM

Our method is used integrated GPUs for accelerating

MapReduce workloads, modifies Map or Reduce tasks

algorithm in such a manner we achieve intra-node

parallelism between the mapper of the each data nodes,

which support GPU acceleration also. When we analyzing

some workloads, it was identified that usually Mapper

tasks consist of the largest portion of processing time,

while Reducer tasks perform more IO processing, such as

writing results into HDFS.We also modified K-means
algorithm in our experiment. In a Mapper, a map function

is executed on each key/value pair which required a large

number of map calls for processing all data on each Data

Node, Thus, some overhead from each mapper and

intercommunication between JobTracker and TaskTracker

is inevitable. To reduce the mapper overhead as well as

prepare batched data for OpenCL kernels, we utilize a data

caching strategy to support GPU acceleration in the

Mapper. We must try to reduce the amount of unnecessary
data copying in order to efficiently transfer data to and

from the GPU. It is also imperative to pass data to the

GPU in large enough chunks so that the GPUs’ data

parallelism can be exploited.

III. EXPERIMENT AND RESULT

We experiment on multi-nodes cluster thus to execute

maximum n number of block in it. In which inter- node

parallelism is occurred but we try to achieve intra-node

parallelism in mapper by using GPU via Opencl with
Hadoop.We evaluate performance gains in time in mm, we

measure total processing time of our CPU version and

OpenCL GPU version, with different number of data

nodes in a cluster. Experiment on 8 data node using table 1

data and evaluating result shown in Figure 1

Table 1 On 8 Data nodes

ON 8 DATANODES

DATA

in GB

KMEANS PARALLEL KMEANS

2 2917 1195

5 8497 6218

10 18942 11798

Figure 1 Comparison of K-means and Parallel K-means

Again we perform experiment on 6 data node using table 2

data and evaluating result shown in Figure 2.

Table 2 On 6 Data node

ON 6 DATANODES

DATA KMEANS PARALLEL KMEANS

2 3421 2249

5 10764 7142

10 23974 14134

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.57103 523

Figure 2 Comparison of K-means and Parallel K-means

Experiment performs on 4 data node on table 3 data and

evaluating result shown in Figure 3.

Table 3 On 4 Data node

ON 4 DATANODES

DATA KMEANS PARALLEL KMEANS

2 3971 2807

5 12970 9794

10 29716 17087

 Figure 3 Comparison of K-means and Parallel K-means

Experiment on 2 data node on table 4 data abd result

shown in figure 4.

Table 4 On 2 Data node

ON 2 DATANODES

DATA KMEANS PARALLEL
KMEANS

2 4679 3971

5 17804 13790

10 39764 21047

Figure 4 Comparison of K-means and Parallel K-means

V. CONCLUSION

Lots of data has been involved in processing these days.

To solve big data problem Hadoop provide a solution in

term of Map/Reduce. But the main objective of

map/reduce is to make processing of big data possible.
Map/reduce runs on all the data nodes present in the

cluster of Hadoop thus provides inter node parallelism. To

improve performance of map/reduce it is integrated with

OpenCL to provide intra node parallelism. In this paper K-

Means algorithm is implemented on map/reduce and

accelerated map/reduce using OpenCL. It is observed that

a parallel K-means out performs K-Means on Hadoop for

all datasets.

REFERENCES

[1]. Sung Ye Kim,Jeremy Bottleson,et al, “Power Efficient MapReduce

Workload Accerlation using Intergated-GPU”, IEEE First

International Conference on Big Data Computing Service and

Application,2015,pp 162-169.

[2]. Himanshu Nayak, Rajesh Tiwari, et al, “A Study of GPU and

CUDA for SIMD Concept” International Journal of Emerging

Research in Management &Technology, 2015, volume-4.pp 2278-9359

[3]. Vincent Boyer, Didier El Baz , “Recent Advances on GPU

Computing in Operations Research”, IEEE 27th International

Symposium on Parallel & Distributed Processing Workshops and

PhD Forum,2013.

[4]. Jayshree Ghorpade, Jitendra Parande,et al. “GPGPU PROCESSING

IN CUDA ARCHITECTURE”, Advanced Computing: An

International Journal (ACIJ), January 2012, vol.3, No.1.

[5]. Stephen W. Keckler , William J. Dally,et al, “GPUS and the

Future of Parallel Computing”, IEEE Computer Society,2011

[6]. John D. Owens, Mike Houston, David Lucbke, et al., “GPU

Computing Proceedings”, IEEE, 2008, 96(5): 879-899.

[7] Chris McClanahan, “History and Evolution of GPU Architecture”,

IEEE, 2010

[8] Stephen W. Keckler, William J. Dally,et al, “GPUS and the Future

of Parallel Computing”, IEEE Computer Society,2011

[9] Paramjeet kaur et al, “A Survey on CUDA”, (IJCSIT) International

Journal of Computer Science and Information Technologies, 2014,

Vol. 5 (2) ,pp 2210-2214.

[10] R. Vuduc, A. Chandramowlishwaran, J. W. Choi, M. E. Guney, and

A. Shringarpure, “On the Limits of GPU Acceleration,” in Proc.

USENIX Wkshp. Hot Topics in Parallelism (HotPar), Berkeley,

CA, USA, June2010.

[11] Volodymyr V. Kindratenko, Jeremy J. Enos, et al, “GPU Clusters

for High Performance Computing”, National Center for

Supercomputing Apllication,University of Illinious at Urbana-

Champaign,USA,

